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Abstract 

Laminar pressure driven flows through annuli fitted with 
longitudinal grooves with an arbitrary cross-section have been 
analyzed. It is demonstrated that a reduced order model is an 
effective tool for extraction of geometric features that lead to the 
drag generation. It is shown that presence of the grooves may 
lead to a reduction of pressure loss in spite of increase of the 
surface wetted area. The drag decreasing grooves are 
characterized by the groove wave number 𝑀 𝑅1⁄  being smaller 
than a certain critical value, where M denotes the number of 
grooves being used and R1 stands for the radius of the annulus. It 
is shown that the drag reduction mechanism relies on the re-
arrangement of the bulk flow which leads to the largest mass 
flow taking place in the area of the largest annulus opening. Form 
of the optimal grooves, from the point of view of the maximum 
drag reduction, has been determined.  

Introduction  

Reduction of pressure losses associated with movement of fluids 
through conduits attracted special attention in recent times due to 
an increase in the cost of energy and an interest in the reduction 
of environmental impact. Most of the fundamental work has been 
devoted to the classical canonical flows, e.g., pressure driven 
flow either through a plane channel or through a circular pipe, 
kinematically driven flows (Couette flow), and various forms of 
boundary layers (the Blasius and the Falkner-Skan boundary 
layers). This work focuses on another, less studied but 
nevertheless technologically important flow, i.e. a pressure 
driven flow through an annulus formed by two concentric 
cylinders. This flow is encountered in petroleum engineering, 
heat exchangers, turbomachinery, fuels cells, aero-engines and 
various chemical industrial devices, and its character has a 
significant impact on the efficiency of these devices. The 
question of stability of the annular flow and an understanding of 
the transition between the laminar and turbulent states represents 
a classical problem that has been studied for over fifty years. 
Heaton [8] provides a summary of the current results in this area. 
The available transition prediction criteria are discussed in [4]. A 
number of important variations of this flow have also been 
studied. Spiral flow occurs when one of the cylinders is subject to 
a rotation; a review of the relevant literature can be found in [3]. 
Recent results on the effects of eccentricity in the location of the 
cylinders are discussed in [16]. Progress in modeling of the 
effects of surface roughness is well summarized in [13]. 
 
Variations in the structure of surface topography offers potential 
for improving the performance of flow systems, following 
examples found in biology [10]. Shark skin represents a good 
example of a low drag surface. The skin is covered with very 
small, tooth-like scales ribbed with longitudinal grooves which 
reduce the formation of vortices present on a smooth surface. The 
leaves of the lotus plant provide an example of a super-

hydrophobic and a low drag surface. The special properties of 
this surface are associated with wax tubules that create a certain 
surface topography. Surface topography affects the form of 
turbulence [9], plays a large role in the laminar-turbulent 
transition [5], and is used as a mixing augmentation technique in 
heat transfer [13]. The above examples illustrate the potential 
gains associated with the use of the properly selected surface 
structures, but one needs to achieve a complete understanding of 
the processes induced by these structures in order to take the full 
advantage of this potential . 
 
One particular form of surface topography, i.e. longitudinal 
grooves/ribs, commonly referred as riblets, have attracted 
attention due to their drag reducing capabilities in turbulent flow 
regimes [15,16]. Such grooves have a wavelength of the order of 
the viscous scale and reduce the shear drag through an 
interference with the turbulence production. The viscous regime 
of vanishing riblet spacing is well understood [1,11]. Results of 
detailed measurements of the drag reduction for various riblet 
shapes have been summarized in [2,6]. For larger riblets, the 
minimum drag is related to the breakdown of the viscous regime 
and this process is less understood [7]. Laminar riblets attracted 
less attention. Mohammadi & Floryan [12] considered pressure-
driven laminar flows and demonstrated drag reducing abilities of 
long wavelength grooves associated with the redistribution of the 
bulk flow.  
 
This work is focused on the analysis of laminar, pressure driven 
flows in annuli outfitted with longitudinal grooves of arbitrary 
shape and on the systematic search for the forms of such grooves 
that are able to reduce drag.  The drag-reducing abilities are 
assessed by determining the additional pressure gradient required 
to maintain the same mass flow rate through the groove-fitted as 
well as through the smooth annuli. 
 
Problem formulation 

Consider steady axial flow in an annulus bounded by two co-
axial cylinders fitted with longitudinal grooves, as illustrated in 
Fig.1. There are M identical grooves of an arbitrary shape over 
the circumference and thus wall geometries can be expressed as 
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where 𝑅1 and 1 + 𝑅1 are the radii of the smooth reference inner 
and outer cylinders, 𝐻𝑖𝑛
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conditions, stars denote the complex conjugates, 𝑁𝐴 is the 
number of Fourier modes required for description of the shape of 



 

 

the grooves, and all quantities have been scaled with the gap L 
between the reference cylinders as the length scale. 
The flow is driven by a constant axial pressure gradient which 
leads to a velocity field with the velocity vector having 
components (𝑣, 0, 0) in the (𝑧, 𝑟,𝜃) directions. This field is 
completely described by the axial momentum equation in the 
form 
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which has been scaled using the maximum of the axial velocity 
of the reference flow 𝑈𝑚𝑎𝑥  as the velocity scale and 𝜌𝑈𝑚𝑎𝑥

2  as 
the pressure scale where 𝜌 stands for the density. The Reynolds 
number is defined as 𝑅𝑒 = 𝑈𝑚𝑎𝑥𝐿 𝜈⁄  where 𝜈 stands for the 
kinematic viscosity. The boundary conditions have the form  
 
𝑣(𝑟,𝜃) = 0 at 𝑟 = 𝑟𝑖𝑛(𝜃) and 𝑟 = 𝑟𝑜𝑢𝑡(𝜃).   
 
The problem of determination of the effects of the grooves is 
posed as the problem of determination of an additional pressure 
gradient required in order to maintain the same flow rate in the 
grooved annulus as in the reference smooth annulus. This 
necessitates introduction of the flow rate constraint in the form  
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where Q is the known flow rate; this flow rate is equal to the flow 
rate in the corresponding smooth annulus. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sketch of the flow geometry - annulus with longitudinal 
grooves with an arbitrary geometry. 
 
The reference flow, i.e. flow in a smooth annulus, has the 
velocity distribution, the pressure gradient and the flow rate 
expressed as 
 
𝑣0(𝑟) = 𝑅12[1 − (𝑟 𝑅1⁄ )2] 𝑘1⁄ + 𝑘2𝑙𝑛(𝑟 𝑅1⁄ ) 𝑘1⁄ , 
𝑑𝑝0 𝑑𝑧⁄ = −4 𝑘1𝑅𝑒⁄  
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where 𝑘1 = 𝑅12 − 𝑘2𝑙𝑛𝑅1 + 𝑘2 2⁄ [𝑙𝑛(𝑘2 2⁄ ) − 1] and 𝑘2 =
(1 + 2𝑅1) 𝑙𝑛[(1 + 𝑅1) 𝑅1⁄ ]⁄ . The maximum of 𝑣0 occurs at 
𝑟 = �𝑘2 2⁄  and this defines the velocity scale 𝑈𝑚𝑎𝑥.  
 
The problem is solved by analytically mapping the irregular flow 
domain onto a rectangular strip in the (r,θ) plane, discretizing the 

resulting equations using Fourier expansions in the θ-direction 
and Chebyshev expansions in the r-direction, and using Galerkin 
projection method to convert the differential system into an 
algebraic system. This procedure provides spectral accuracy. 
 
 

 

 

 

 

 

 

 

 

Figure 2. Distribution of the axial velocity component in an annulus with 
the inner cylinder with the average radius R1=5 fitted with five sinusoidal 
grooves with the amplitude Sin = 0.3 and a smooth outer cylinder. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of the axial component of shear stress acting on the 
fluid at the inner cylinder for the same geometry as in Fig.2 but with the 
inner cylinder fitted with M = 1, 5, 10, 15 grooves. Dashed line provides 
reference value for the smooth cylinders. 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of the axial component of shear stress acting on the 
fluid at the outer cylinder. Other conditions as in Fig.3.  

 
Results 

There is an uncountable number of possible groove shapes and 
positions. It can be shown [12] that the complete effect can be 
decomposed into (i) an effect due to the change in the average 
position of each cylinder (i.e. change of the flow cross-sectional 
area) and (ii) an effect due to the spatial flow modulations created 
by the grooves. The former one can be accounted for analytically 
and, thus, this presentation is focused on the modulation effect. 
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The reduced order model based on the use of the leading Fourier 
mode from the Fourier expansion describing geometry of the wall 
permits determination of changes of the friction factor with 
accuracy of at least 10% in the case of channel flows [12].  The 
same model is used in the present analysis. 

Figure 2 displays velocity contours for an annulus with the drag 
reducing grooves. It can be seen that the mass flow rate 
concentrates in the area of the largest annulus opening. Figure 3 
displays distribution of shear stress at the grooved wall for the 
annulus fitted with different numbers of grooves. A qualitative 
change in the distribution of the shear associated with the change 
from the drag reducing to the drag increasing system (when M 
increases above the critical value) can be observed. Figure 4 
displays shear stress at the outer smooth wall under the same 
conditions. It can be seen that the grooves have a marginal effect 
on this shear. Figure 5 displays variations of the modification 
friction factor normalized with the friction factor for the smooth 
cylinder with either the inner or the outer cylinder fitted with the 
grooves. It can be seen that the radius of the inner cylinder has to 
be sufficiently large to produce drag reduction, the magnitude of 
the reduction increases with the amplitude of the grooves, and 
grooves placed at the inner cylinder are more effective than the 
same grooves placed at the outer cylinder. 

 

 

 

 

 

 

 

 

 

Figure 5. Variations of the modification friction factor normalized with 
the friction factor for the smooth annulus as a function of the groove 
amplitudes 𝑆𝑖𝑛 (inner cylinder) and 𝑆𝑜𝑢𝑡 (outer cylinder) and the radius of 
the inner cylinder 𝑅1 for the groove geometry described by one Fourier 
mode for M = 15 grooves. Solid (dash) lines correspond to grooves 
placed only at the inner (outer) cylinder. 

 

The above results have been obtained for grooves with shape 
represented by a single Fourier mode. Determination of the most 
effective shape requires use of optimization procedure with 
constraints guaranteeing preservations of the same annulus cross-
sectional area and preventing contact between both cylinders. It 
was assumed in the analysis that the number of grooves M, the 
cylinder radius R1, and the maximum permitted height and the 
maximum permitted depth of the grooves were specified and kept 
constant during optimization. Groove shape was represented by a 
Fourier expansion and the optimization process identified 
coefficients of such expansion. It has been found that these 
expansions converged rapidly and 4-5 Fourier modes were 
sufficient to describe the optimal shape.  

Figure 6 shows that the optimal shape in the case of grooves with 
the same height and depth can be well approximated by a 
trapezoid. Figure 7 illustrates changes in the friction factor 
resulting from the use of such grooves. It can be seen that these 
grooves provide up to 25% better performance. Their advantage 
increases with an increase of the groove amplitude. 

The same optimization process carried out with a fixed height of 
the grooves but with their depth being one of the variables results 
in grooves that can be well approximated using a delta function, 
as shown in Fig.8. 

 

Conclusions 

An analysis of the laminar flows through annuli fitted with 
longitudinal grooves has been carried out. Forms of the grooves 
that result in the reduction of the pressure gradient below the  

 

 

 

 

 

 

 

 

 

Figure 6. Evolution of the optimal shape of M =  10 equal-depth grooves 
placed at the inner cylinder as a function of the wall curvature R1. Solid, 
dashed and dotted lines correspond to the depth of the grooves 𝑆𝑖𝑛,𝑖 =
𝑆𝑖𝑛,𝑜= S = 0.2, 0.5, 0.8, respectively. Thick lines describe the universal 
shape, i.e. trapezoid  with 𝑎 = 𝑏 = 𝜆/6 and 𝑐 = 𝑑 =  𝜆/3. 

 

 

 

 

 

 

 

 

 

Figure 7. Variations of the modification friction factor normalized with 
the smooth annulus friction factor as a function of the cylinder curvature 
𝑅1 and the groove amplitude S for M = 10 equal-depth trapezoidal 
grooves placed at the inner cylinder . Dashed lines are for the sinusoidal 
grooves with the same amplitude. 

 

 

 

 

 

 

 

 

 

Figure 8. Evolution of the optimal shape of the unequal-depth grooves 
placed at the outer cylinder as a function of the depth of the groove 𝑆𝑜𝑢𝑡,𝑜. 
The height of the groove is set at  𝑆𝑜𝑢𝑡,𝑖 = 0.5,  M = 10 grooves are used 
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and the cylinder radius of curvature is 𝑅1 = 20. Dashed lines illustrate 
shapes corresponding to the optimal depth. 

 

level needed to maintain the same flow rate as in a smooth annuli 
have been identified. A reduced order model has been used as a 
tool for the extraction of features of groove geometry that lead to 
drag reduction. It is shown that the presence of the grooves may 
lead to a reduction of pressure loss in spite of an increase of the 
surface wetted area. The drag decreasing grooves are 
characterized by the groove wave number 𝑀 𝑅1⁄  being smaller 
than a certain critical value, where M denotes the number of 
grooves being used and 𝑅1 stands for the radius of the annulus. It 
is shown that the drag reduction mechanism relies on the re-
arrangement of the bulk flow that leads to the largest mass flow 
taking place in the area of the largest annulus opening. A search 
for the form of the grooves that results in the largest decrease of 
the drag, i.e. the optimal shape, has been carried out. It has been 
found that in the case of the equal-depth grooves the optimal 
shape changes very little as a function of the flow and geometry 
parameters and can be approximated using a special form of 
trapezoid. Drag reduction is a non-monotonic function of 
groove's depth in the case of the unequal-depth grooves. The 
depth that gives the largest drag reduction for a given height, the 
optimal depth, as well as the corresponding groove shape define 
the optimal geometry. Properties of the optimal geometry can be 
determined directly through the optimization process. It is shown 
that the optimal shape forming the optimal geometry can be 
approximated using a delta function. 
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